블로그 이미지
zeonis
번역가이자 IT와 뉴미디어에 관심이 많은 방송기자

calendar

          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

'디지털 세상'에 해당되는 글 64

  1. 2010.07.10 Facebook Connect 페이스북 커넥트
  2. 2010.07.10 소셜 그래프(social graph)란?
  3. 2010.07.10 5년 간의 웹 2.0 행적
  4. 2010.07.10 구글 애플리케이션 엔진이란?
2010.07.10 21:09 디지털 세상
페이스북 커넥트에 잘 설명된 글을 옮겨왔습니다. 이 글은 스프링노트에서 작성되었습니다.  

그 동안 숱하게 이야기되었던 페이스북 커넥트(Facebook Connect) 적용한 사이트들이 하나둘씩 모습을 드러내고 있다. 페이스북 커넥트는 데이터 이동성을 적용한  페이스북의 서비스라 할 수 있는데, 굳이 페이스북을 방문하지 않고 다른 서비스에서 페이스북의 데이터를 이용할 수 있는 서비스이다. 그 동안 페이스북은 공개를 통해 외부 사업자가 페이스북 내에 자신의 어플리케이션을 페이스북 이용자에게 수 있도록 해왔고.. 이 개방 정책이 큰 성공을 거두며 마이스페이스를 세계 1위의 소셜네트워킹 서비스로 등극한 바 있다.

이제는 페이스북에 있는 정보를 외부 서비스에서 이용할 수 있도록 또 개방을 한 것이다. 데이터 이동성을 둘러싸고 마이스페이스도 Data Availability라는 서비스를 놓았고, 구글도 Google Friend Connect를 내 비슷한 시기에 내 놓는  경쟁도 점점 더 치열해 지고 있다. 어떤 식으로 서비스가 제공될지 궁금했던 페이스북 커넥트가 드디어 모습을 드러냈는데, 자주 보는 테크크런치에  페이스북 커넥트를 이용한 댓글 달기 기능이

아래 그림에서 보는 것처럼 테크크런치의 댓글 달기 기능 옆에 커넥트 버튼이 생겼고,

버튼을 누르면 아래와 페이스북 계정을 통해 로그인을 할 수 있다. 안내에도 나오는 것처럼 테크크런치 단 댓글을 자신의 페이스북에 게시할 수도 있다.

아래는 테크크런치에 댓글을 달았을 때 내 페이스북에 공개여부를 묻는 창이다.

일단 테크크런치에는 아주 간단한 형태로 적용되어 다른 서비스에는 페이스북 커넥트를 이용해서 어떤 기능을 선보일지 아주 궁금해진다. 정보를 불러 와서 바로 그 친구한테 보내는 것도 가능할 듯

구글도 Google Friend Connect에 대한 베타 테스트를 한창 진행 중이다. 저도 베타 테스트에 참여할 수 있는 권리는 받았는데.. 블로그에 적용할 방법

이 없는 듯.. 실제 가입해서
이용해 보면 내 블로그에 적용할 HTML 파일 두 개를 주는데.. 티스토리에서는 업로드할 방법이 없다. 진짜 설치형 블로그를 운영하시는 분은 한 번 적용해 보시길..

업데이트> 아래 트랙백으로 알려 주셨는데.. 이장님 블로그에 구글 프렌드 커넥트를 적용하셨네요.. 텍스트뷰브를 직접 운영하시니까.. 바로 적용이 가능한 것 같습니다. 구글이나 오픈아이디 등을 통해 바로 해당 사이트에 가입할 수 있고.. 댓글도 남길 수가 있어요.. 궁금하신 분은 이용해 보시길..

데이터 포함한 최근 웹의 트랜드는 웹이 점점 사회적(Social Web)으로 변화하고 있다는 분명해 보인다. 소셜웹으로 진화해 갈수록 커뮤니케이션의 욕구는 더욱 상승할 것이고.. 따른 음성 커뮤니케이션 수요도 덩달아 높아갈 것이다. 과연 누가 이 장악할 것인가?



 

posted by zeonis

댓글을 달아 주세요

2010.07.10 16:09 디지털 세상
Social Graph의 중요성은 SNS 사이트 내의 이용자간 네트워크를 도식화 하여 상품 광고 및 판매에 있어 효과적인 채널을 제공해주는 동시에 사용자간의 관계에서 발생하는 needs를 제공해 주는데 있다.

1. Social Graph의 의미
2. Google의 Social Graph API
3. SNS의 오픈을 위한 Data 이동성

1. Social Graph의 의미
Social Graph란 SNS 사이트 내의 인적 네트워크를 이미지로 표현한 것으로, 친구나 사업상의 인간 관계 등 현실 사회에 있는 인간 관계의 연결이라고 볼 수도 있다. 이 Social Graph가 가지는 중요성은 바로 SNS 사이트 내의 이용자간 네트워크를 도식화하여 상품 광고 및 판매에 있어 효과적인 채널을 제공해주는 동시에 사용자간의 관계에서 발생하는 needs를 제공해 주는데 있다.

2. Google의 Social Graph API
Social Graph API 공개 이전의 기존 SNS는 link 만이 존재하고, 이용자들은 각각이 가입한 SNS의 범위 내에서만 인적 네트워크 구축이 가능했다. (싸이에서 아무리 일촌 파도를 타 봐야, 그 종착지는 싸이 안이다.) 이 API가 공개되면서 서로 다른 SNS일지라도 인적 네트워크의 구축이 가능해지는 것이다.

Social Graph API는 두가지 타입의 연결 방식을 찾는다.
1) 블로그, LiveJournal page, Twitter 등 공개된 모든 URL 연결을 찾는다.
2) 사용자들간의 연결 방식을 정의한다. 예를 들어 a1은 b이 블로그를 링크할 수도 있고, c와는 상호 링크할 수도 있다.
사용자 삽입 이미지

Social Connections (Source : Google Social Graph API, code.google.com/apis/socialgraph)


이러한 방식으로 상용자의 연결에 대한 인덱스를 정리한다면, 개발자는 사용자들의 연결을 더욱 쉽게 만들어줄 수 있는 다양한 애플리케이션들을 개발할 수 있다.

아래의 그림에서 예를 든다면, Brad가 Twitter에 가입하여 아직 'Friend'가 하나도 없는 상태에서도 Social Graph API를 이용하면 친구인 Jane 역시 Twitter에 가입해 있는 것을 알 수 있다.
1) Brad는 자신의 Twitter profile (b1)을 homepage (b3)에 link한다.
2) Brad는 자신의 homepage (b3)를 LiveJournal 블로그인 Bradfitz (b2)에 link한다.
3) Bradfitz는 Livejournal에서 Jane274 (j2)와 친구이다. 하지만, Brad는 Jane274 (j2)가 Twitter profile (j1)에 link 되어 있는 것을 모른다.
4) Social Graph API는 Livejournal 상에서 Brad와 Jane이 친구 사이라는 것을 알고 있으므로, Twitter 에서도 친구 관계로 설정할 수 있다.
사용자 삽입 이미지

How can Social Graph API find friends (Source : Google Social Graph API, code.google.com/apis/socialgraph)


3. SNS 오픈을 위한 Data 이동성
복수의 SNS 계정을 가지고 있는 이용자들이 자신의 데이터를 각각의 사이트에 입력해야 하는 번거러움을 덜기 위해서는 데이터의 이동이 필수적이다. Google, MS, Facebook, Myspace.com 등의 주요 업체들은 이 데이터 이동성에 참여하고 있고 워킹 그룹이 활성화 되어 권고안이 발표되면, 복수의 SNS 사이트 간의 개인 정보 등의 데이터 이동이 자유로워질 전망이다.
데이터 이동성을 위해서는 Open ID, Single Sign On, Microformat, oAuth, APML 등의 기술이 필요한데, 기술적인 내용보다는 사용자들간의 네트워크를 통해 발생하는 개인 정보에 대한 소유권이 누구에게 있는지, 어떻게 활용해야 하는지에 대한 개인 사생활 보호 문제는 여전한 과제로 남아 있다.

Google의 Social Graph API와 데이터 이동성 등은 다양한 Social Network를 가로지르며 정보와 컨텐츠를 확보하고 네트워크를 확장할 수 있다는 장점이 있다. 하지만 SNS의 핵심은 API가 아닌 바로 사람이고, 따라서 사용자의 체험을 변화시킬 API 이상의 킬러 애플리케이션이 더욱 중요한 것임은 자명하다.

(Main Source : Atlas Research)

posted by zeonis

댓글을 달아 주세요

2010.07.10 15:59 디지털 세상

by 팀 오라일리(Tim O'Reilly)와 존 바텔(John Battelle), 홍형경 역 
                                                                                               
출처: from.http://www.hanb.co.kr,  elitesol.egloos.com/5221968
협동하는 데이터 서브시스템

초기 웹 2.0에 대한 분석에서, 우리는 미래의 "인터넷 운영체제"는 일련의 상호 운영되는 데이터 서브시스템들로 구성될 것이라고 예상했다. 구글 모바일 애플리케이션은 이러한 데이터로 구동되는 운영체제의 작동 방식에 대한 한 가지 예를 보여주고 있다.
이 경우, 모든 데이터 서브시스템들은 구글 이라는 하나의 벤더에 의해 소유된다. 이와는 다르게 애플의 iPhoto '09의 경우에는, 애플 자신의 클라우드 서비스 뿐만 아니라 플리커와 구글 맵을 통합하고 있고, 애플리케이션은 여러 벤더의 클라우드 데이터베이스 서비스를 사용하고 있다.
지난 2003년 우리가 최초로 언급했듯이, 데이터는 차세대 컴퓨터 애플리케이션의 "인텔 인사이드"이다. 즉, 애플리케이션이 동작하는데 필요한 유일한 데이터 소스를 한 회사가 점유하고 있다면, 그 회사는 자신의 데이터 사용에 대해 독점권을 발휘하게 될 것이다. 특히, 데이터베이스가 사용자들의 참여로 생성되었다면, 시장 리더들은 자신들의 데이터베이스의 가치와 크기가 시장에 막 진입한 신생 회사들보다 더 빠르게 성장함에 따라 수익이 증가하는 것을 보게 될 것이다.

우리는 웹 2.0 시대를 데이터 자산을 제어하고 획득하기 위한 하나의 경쟁으로 보고 있다. 이러한 자산들 일부(이베이에 있는 많은 수의 판매자 목록이나 크레이그리스트에서 분류된 많은 수의 광고)는 애플리케이션에 특화되어 있다. 하지만 다른 자산들은 이미 기본적인 시스템 서비스의 특성으로 자리를 굳혔다.
인터넷의 기간 서비스인 DNS의 도메인 등록을 예로 들어보자. 혹은 앨범과 노래에 대한 메타데이터를 찾는 모든 음악 애플리케이션에 의해 사용되는 CDDB를 고려해보자. 나브텍(Navteq)과 텔레아틀라스(TeleAtlas) 같은 업체들이 제공하는 데이터에 대한 매핑은 사실상 모든 온라인 매핑 애플리케이션에 의해 사용되고 있다.
지금도 소셜 그래프를 소유하기 위한 경쟁이 진행되고 있다. 하지만 이것이 모두에게 개방될 필요가 있을 정도로 기본적인 서비스인지 여부를 짚고 넘어가야 한다.
오늘날의 연약하고 혼잡한 통로에 의해 호환되지 않는 수 백 개의 이메일 시스템들로 소셜 네트워킹이 합쳐진 것처럼 15년 전 이메일이 산산조각이 났던 사실을 잊기는 쉽다. 그리고 이러한 시스템 중의 하나인 인터넷 RFC 822 이메일은 교환을 위한 훌륭한 표준이 되었다.
우리는 핵심적인 인터넷 유틸리티와 서브시스템들에서 비슷한 표준화가 나타나길 기대한다. 승자독식의 시장에서 경쟁하는 벤더들은 협력 회사들의 최상의 데이터 서브시스템으로부터 시스템을 구축할 수 있도록 함께 할 것을 조언 받고 있다.


웹의 학습 방식: 명시적 vs. 함축적 의미

웹은 어떤 식으로 학습을 할까? 일부 사람들은 컴퓨터 프로그램들이 의미를 이해하고 반응하는 것을 상상하고 있는데, 이러한 의미는 일부 특별한 분류방식으로 암호화될 필요가 있다. 하지만 실제로 우리 눈앞에 있는 것은 데이터 본체로부터 "추리"에 의해 학습되는 의미이다.

음성 인식과 컴퓨터 비젼은 모두 이러한 종류의 기계 학습의 훌륭한 예라 할 수 있다. 하지만, 중요한 점은 기계 학습 기술은 센서 데이터를 훨씬 뛰어 넘는 곳에까지 적용된다는 사실이다. 예를 들어, 구글의 광고 옥션은 학습 시스템이며, 기계 학습 알고리즘에 의해 실시간으로 최적의 광고 위치와 가격이 만들어진다.

또 다른 경우, 의미는 컴퓨터를 "가르치기"도 한다. 즉, 애플리케이션에 하나의 구조화된 데이터 셋과 다른 데이터 셋 사이의 매핑이 주어진다. 예를 들어, 거리의 주소와 GPS 좌표간의 제휴는 학습된다기 보다는 가르치는 것에 더 가깝다. 두 데이터 셋 모두 구조화됐지만, 이들을 연결하기 위해서는 통로가 필요하다.
또한 두 데이터 셋 간의 연결을 인지하는 방법을 애플리케이션에게 가르침으로써 구조화되지 않은 데이터에 구조성을 부여하는 것도 가능하다. 예를 들어, 아이폰 애플리케이션인 You R Here는 이러한 두 가지 접근법을 교묘히 결합하고 있다. 아이폰 카메라를 사용해서 공원의 입구에 있는 안내도나 다른 자전거 주행도 같은, 구글맵과 같은 일반적인 매핑 애플리케이션에는 없는 세부정보를 담은 지도의 사진을 찍는다. 그리고 아이폰의 GPS를 사용해 지도상에서 현재 위치를 설정한 뒤, 한참 걸어간 후에 멈춰서 두 번째 지점을 설정한다. 그리고 나면 구글맵에서 처럼, 아이폰을 이용해서 사용자 정의 지도의 이미지상에서 자신의 위치를 쉽게 추적할 수 있다.

웹에서 가장 근본적이며 유용한 서비스 중 일부는, 일단 인지를 하고 나서 처음에는 구조화되지 않은 것처럼 보이는 데이터에서 미처 보지 못한 규칙을 가르치는 방식으로 만들어져 왔다.

타이 칸(Ti Kan), 스티브 쉬러프(Steve Scherf), 그리고 CDDB의 창시자 그레이엄 톨(Graham Toal)은 CD의 트랙 정보가 가수, 앨범, 그리고 노래제목과 상관관계를 맺을 수 있는 유일한 서명을 형성한다는 점을 깨달았다. 래리 페이지와 세르게이 브린은 링크가 득표수라는 점을 깨달았다. Wesabe의 마크 헤드런드(Marc Hedlund)는 모든 신용카드 결재 또한 득표수이며, 거기에는 동일한 가맹점을 반복적으로 방문한다는 의미가 숨어 있음을 깨달았다. 페이스북의 마크 주커버그(Mark Zuckerberg)는 온라인상의 친구관계는 실제로 일반화된 소셜 그래프(Social Graph)를 구성한다는 점을 깨달았다. 이것 들은 처음에는 구조화되지 않은 것처럼 보이던 데이터를 인간과 기계 모두를 사용해서 구조화된 데이터로 변모시키고 있다.

핵심 사항: 웹 2.0시대의 핵심 역량은 함축된 메타데이터를 찾아내어 이를 둘러싸고 있는 생태계를 육성하는 메타데이터를 잡아내기 위한 데이터베이스를 구축하는 것이다.

웹과 현실 세계의 조우: "정보 그림자(Information Shadow)"와 사물의 인터넷(Internet of Things)

"센서 기반 애플리케이션"이라고 하면, 많은 사람들은 RFID 태그나 ZigBee 모듈로 구동되는 애플리케이션의 세계를 떠올릴 것이다. 하지만 이러한 미래는 그리 가까이 있지 않으며, 배포 테스트나 소수의 초기 단계 애플리케이션에서만 현존하고 있다. 그런데 많은 사람이 놓치고 있는 점이 하나 있는데, 바로 센서 혁명이 이미 얼마나 진행됐느냐는 점이다. 센서 혁명은 모바일 시장의 감춰진 얼굴이자 가장 폭발적인 기회라 할 수 있다.

오늘날의 스마트폰에는 마이크로폰, 카메라, 동작 센서, 근접 센서, 위치 센서(GPS, 송신탑의 삼각측량, 심지어는 나침반까지)가 내장되어 있다. 이러한 센서들은 독립형 애플리케이션의 사용자 인터페이스에 혁명을 가져왔다. 이의 전형적인 예가 바로 불기만 하면 되는 아이폰용 오카리나(Smule's Ocarina)이다. 하지만 모바일 애플리케이션들은 연결된 애플리캐이션 이라는 점을 잊지 말아야 한다. 웹 2.0의 근본적인 교훈은 웹이나 이동전화기반의 그 어떠한 네트워크 애플리케이션에도 적용된다는 점이다. 센서기반 애플리케이션들은 더 많은 사람들이 사용하고, 좀 더 많은 사용법을 창조해내는 피드백 루프를 생성하는 데이터를 수집하면서 개선되도록 설계될 수 있다. 구글 모바일 App에 있는 음성 인식은 이러한 애플리케이션 중 하나이다. 인터넷에 연결된 새로운 GPS 애플리케이션들 또한 피드백 루프가 내장되어 있어서, 현재 속도를 보고하고 이 정보를 사용해서 전방의 교통정보에 근거해 도착 시간을 추정한다. 오늘날, 교통 패턴은 대략적인 추정되고 있는데, 앞으로는 실시간으로 측정될 것이다.

망(Net)은 생각 이상으로 빠른 속도로 똑똑해지고 있다. 사진에 붙는 지오태깅(geotagging)을 고려해보자. 초기에는 사용자들이 태그를 부착해서 사진과 위치정보 간의 관계를 컴퓨터에게 알려줬다. 모든 사진에 지오태그가 부착되는 그 날, 카메라들은 그 위치를 알게 될 것이며, 인간이 제공한 그 어떤 것보다 훨씬 더 정확한 위치를 알게 될 것이다.

그리고 하나의 데이터 셋에서 정확도가 커질수록 다른 데이터 셋의 정확도도 높아진다. 지오태그가 부착된 플리커 사진에 의해 생성된 아래 지도가 얼마나 정확한지 살펴보자. 수 억장의 사진이 제공된다면 이 지도는 얼마나 더 정확해질까?

2
미국의 플리커 지오태그 지도
http://flickr.com/photos/straup/2972130238/

망의 시각센서 네트워크를 위한 보조도구들은 위치에 제한받지 않을 것이다.
이것들은 초기 상태로 남아있지만, 애플 iPhoto '09의 안면인식은 꽤 훌륭하다. 과연 인식하지 않은 사람들만 보여줄 수 있는 시스템의 출현을 위해 이름을 부착한 얼굴이 충분해지는 시점은 언제가 될까? (애플이 시스템 서비스로 이러한 데이터를 제공할지 여부는 여전히 의문으로 남아있다. 또한 다른 누군가가 네트워크 서비스로 제공할지 여부도 확실치 않다.)

3
텍사스의 플리커 지오태그 지도
http://flickr.com/photos/straup/2971287541/

4

안드로이드를 위한 위키튜드(Wikitude) 여행 가이드 애플리케이션은 훨씬 더 향상된 이미지 인식을 한다. 이 애플리케이션은 이동전화 카메라로 기념물이나 다른 흥미로운 장소를 찍은 지점을 자신의 온라인 데이터베이스에서 찾는다. 화면에는 카메라가 찍은 것은 물론, 현재 여러분이 보고 있는 것에 대한 추가 정보까지 표시된다. 즉, 헤드업 디스플레이 기능이 실현되고 있는 것이다. 이 애플리케이션은 미래의 "증강현실(augmented reality)"의 첫 발을 내딛고 있는데, 여러분이 현재 보고 있는 장소를 추적하기 위해 나침반을 사용하면서, 관심 있는 지점까지의 거리를 겹치는 방식을 사용한다. 이 이동전화를 사용해서 관심 있는 지점 근처의 지역을 한 바퀴 둘러볼 수도 있다.
Layer는 이러한 아이디어를 더욱 발전시켜, 이동전화 카메라를 통해 본 "증강현실" 콘텐츠의 다중 레이어를 위한 프레임워크를 약속하고 있다.

센서기반의 애플리케이션이 초능력을 준다고 생각해보자. 다크슬라이드(Darkslide)는 슈퍼맨 같은 시력을 선사해서 여러분 근처에 있는 사진을 보여주고 있다. 아이폰 트위터 애플리케이션은 "근처에 있는 최근의 트윗을 찾아" 초강력 청력을 부여해서 주변에서 진행되고 있는 대화를 고를 수 있게 한다.

Photosynth, Gigapixel Photography,그리고 Infinite Image

센서 데이터와 기계학습의 증가는 가상의 세계 재건축과 창조적인 표현에 있어 새로운 개척자에게 인도할 것이다.
마이크로소프트의 Photosynth는 크라우드소싱으로 만들어진 사진들을 3D 이미지로 합성하는 컴퓨터의 능력을 여실히 보여주고 있다. Gigapixel photography은 근처에 있는 사람들에게 조차도 보이지 않는 세부적인 화면을 보여준다. 어도비의 Infinite Image는 좀 더 놀랄만한 컴퓨터의 능력을 보여주고 있는데, 한 무리의 사진들을 이용해 존재하지 않는 가상적인 세상을 완벽한 3D로 재현하고 있다. 아래의 비디오는 보게 되면 믿게 된다는 사실을 여실히 증명하고 있다.



이 모든 해결책들은 ThingM의 마이크 쿠니아브스키(Mike Kuniavsky)가 언급했던 사실을 반영하고 있다. 그는 실 세계의 사물들은 사이버공간에서 "정보 그림자"를 갖고 있다고 주장했다. 예를 들어, 책은 아마존, 구글 북서치, 굿리드(Goodreads), 쉘파리(Shelfari) 그리고 라이브러리씽(LibraryThing), 이베이, 북무우취(BookMooch), 트위터, 그리고 수 천개의 블로그 상에서 정보 그림자를 갖고 있다.

노래는 아이튠, 아마존, 랩소디(Rhapsody), 마이스페이스, 페이스북에서 정보 그림자를 가지고 있다. 한 개인의 경우 수 많은 이메일, 인스턴스 메시지, 전화통화, 트윗, 블로그 포스팅, 사진, 비디오 그리고 정부 문서에서까지 정보 그림자를 가지고 있다. 슈퍼마켓 선반에 놓인 상품, 딜러의 차고에 있는 자동차, 하역장에 있는 새로 채굴된 붕소, 작은 마을의 대로변에 있는 상점 등 모든 것은 현재 정보 그림자를 갖고 있다.

대부분의 경우, 이러한 정보 그림자들은 ISBN이나 ASIN, 부품번호 혹은 주민번호, 자동차 번호 등과 같은 유일한 식별자에 의해 실 세계에 있는 사물이나 사람들과 긴밀히 연결되어 있다. 다른 형태의 식별자도 존재한다. 이름에 주소나 전화번호를 결합하거나, 이름과 사진을 결합한 것 그리고 아주 확실한 알리바이 조차도 처참하게 무너뜨릴 수 있는 특정 지역으로부터 걸려온 전화와 같은 것들도 유일성을 나타낼 수 있다.

"사물의 인터넷"에 관해 말하는 많은 사람들은 일상생활에서 사용되는 물체에 IP 주소와 슈퍼 RFID 칩이 결합될 것이라고 가정하고 있다. 즉, 사물의 인터넷을 구현하기 위해서는 모든 물체가 유일한 식별자를 가져야만 한다고 가정하고 있다.

웹 2.0 감성이 우리에게 말하고 있는 것은 다양한 종류의 센서 데이터의 기여에 의해 사물의 인터넷에 도달할 것이며, 기계 학습 애플리케이션들은 자신에게 유입된 데이터를 점점 더 확실히 이해하게 될 것이라는 점이다. 사물의 인터넷이라는 흐름에 합류하기 위해 슈퍼마켓 선반에 있는 한 병의 와인에까지 RFID칩을 붙일 필요는 없다. 상표를 찍은 사진만으로도 충분하다. 나머지는 이동전화, 이미지 인식, 검색 그리고 감각적인 웹이 맡게 될 것이다. 즉, 슈퍼마켓에 있는 각 상품에 기계가 인식할 수 있는 유일한 ID가 부착될 때까지 기다리지 않아도 된다. 대신, 바코드, 사진태그 그리고 부르트포싱(brute0forcing) 같은 간단한 해킹기술을 응용해서 식별할 수 있다.

제프 조나스(Jeff Jonas)는 신원 확인 작업을 하면서 아주 흥미진진한 사실을 언급했다. 조나스의 작업 중 일부는 다양한 소스들로부터 유명한 미국 사람들에 대한 데이터베이스를 구축하는 것이었다. 시스템이 모든 변동사항을 식별할 만큼 충분한 정보를 보유하기 전에, 그의 데이터베이스에는 이미 6억3천만 건 정도의 "신원"을 확보하고 있었다. 그런데 특정한 순간에 데이터베이스가 학습을 시작하면서 용량이 줄어들기 시작했다. 신규로 데이터가 들어감에 따라 데이터베이스는 커지기는 커녕, 더 작아졌다. 6억 3천만에 3천만 건이 더해져서 6 억 건의 데이터가 만들어졌는데, "컨텍스트 누적(context accumulation)" 이라는 인지 계산법에 의해서 이런 마술과 같은 일이 일어난 것이다.

정보 그림자가 두터워짐에 따라, 좀 더 견고하고, 명시적인 메타데이터에 대한 요구는 감소되고 있다. 카메라와 마이크로폰은 웹의 눈과 귀가 되고 있고, 모니터 센서, 근접센서, GPS는 위치인식은 감각기관이 되어가고 있다. 정말, 웹이라는 신생아는 계속 자라고 있다. 우리는 인터넷과 만나고 있으며, 우리가 바로 인터넷이다.

센서와 모니터링 프로그램들은 단독적이 아닌, 자신들의 인간 파트너와 한 조를 이루며 동작한다. 우리는 중요하다고 생각되는 얼굴을 인식하도록 사진 프로그램을 가르치고, 관심 있는 뉴스를 공유하며, 트윗에 태그를 덧붙여 좀 더 쉽게 분류해서 정리할 수 있다. 우리 자신을 위해 가치를 추가하면서, 소셜 웹에도 역시 가치를 추가하고 있다. 디바이스들이 우리의 활동영역을 넓히고 있고, 우리 역시 디바이스의 영역을 확장하고 있다.

이러한 현상은 소비자 웹에만 국한되지 않는다. IBM의 스마터 플라넷 이니셔티브와 나사(NASA)와 시스코의 "planetary skin" 프로젝트는 비즈니스가 센서 웹에 의해 얼마나 심도있게 변형될 것인지를 보여주고 있다. 정유회사, 제철회사, 공장 그리고 공급망 들은 웹 애플리케이션에서 볼 수 있는 것과 정확히 동일한 종류의 기계 학습 알고리즘과 센서로 무장하고 있다.

뻔하디 뻔한 대기업들의 선언에서는 미래가 명확히 보이고 있지 않지만, 초기 수용자들과 "알파 긱스(alpha geeks)"의 솜씨 좋은 최적화에서는 명확히 보이고 있다. 레이다 블로거인 넷 토킹턴(Nat Torkington)은 웰링턴에서 만났던 택시기사 이야기를 해주고 있는데, 이 택시기사는 6주 동안에 태운 손님들의 기록(GPS, 날씨, 승객 그리고 다른 세가지 변수)을 컴퓨터에 저장해서, 하루 중 손님이 제일 많은 특정 시간을 알아내기 위해 몇 가지 분석을 했다고 한다. 이 분석 결과를 이용해서 그는 다른 택시기사에 비해 적게 일하고도 높은 수익을 거둬들일 수 있었다고 한다. 세상을 도구화하는 것은 충분히 그럴만한 가치가 있다.

데이터에 있는 패턴을 보기 위한 데이터 분석, 시각화 그리고 다른 기술들은 점점 더 가치 있는 기술 집합체가 되어가고 있다.

이는 물체 특히 잘 알려진 집합체(책이나 뮤직 컬렉션 같은)의 인스턴스들인, 대체품에 대한 유일한 식별자로서의 역할을 말하는 것이 아니다. 하지만 디지털 데이터에 선험적 의미를 추가하기 위한 공식적인 시스템들이, 실제로는 특성 인식을 통해 의미를 추출하는 비공식적 시스템보다 강력하지 않다는 점을 보여주는 증거가 존재한다. ISBN은 책에 대한 유일한 식별자를 제공하지만, 오히려 제목 + 저자가 피부에 더 와 닿을 것이다.

원시 센서 데이터를 체계적으로 분류하는 프로젝트들은 아마도 Astrometry 프로젝트의 노선을 따라 만들어질 것이다. 이 프로젝트의 창시자는 "우리는 과거와 미래, 그리고 현재까지 수집된 모든 유용한 천문학 이미지들을 위한 정확하고, 표준에 맞는 천문학 메타 데이터를 생성하기 위한 '천체 측정학 엔진'을 구축하고 있다"라고 주장하고 있다. 이 엔진을 사용해서 Flickr astrotagger bot은 천체의 이미지를 플리커에서 찾아 적절한 메타데이터를 제공해서, 이름으로 천문 이미지들을 검색할 수 있게 한다. 이는 산만한 센서 데이터를 정규화된 검색 데이터베이스와 매핑하는 검색 서비스인 CDDB와 유사한 서비스이다.

이러한 것들은 초기의 열성가들에 의해 만들어졌다. 그들은 기업가들이 동일한 원칙을 새로운 비즈니스 기회에 적용하는 세계가 올 것을 예고했다. 우리가 살고 있는 세계에서 센서가 점점 더 활성화됨에 따라, 그들의 데이터 흐름으로부터 의미와 가치가 얼마만큼 추출될 수 있는지에 대한 놀랄만한 계시가 나올 것이다.

이른바 "스마트 전기 그리드"를 생각해보자. 에너지 관련 센서 데이터를 위한 중성 백엔드 웹서비스인 AMEE의 창시자인 가빈 스타크(Gavin Stark)는 연구자들이 영국의 1200만 가구로부터 수집한 스마트 메타 데이터를 결합하면서, 각 가정에 있는 가전제품들이 유일한 에너지 서명(signature)를 가지고 있는 사실을 발견했다는 점에 주목했다. 이 에너지 서명을 이용해서 각 가전제품이 사용한 전력량 뿐만 아니라, 각각의 주요 가전제품의 모델과 제조사를 결정하는 것이 가능하다. CDDB를 소비자 가전제품으로 생각하라.

구조화되지 않은 데이터와 구조화된 데이터 셋과의 매핑은 핵심적인 웹 스퀘어드 역량이 될 것이다.

실시간의 도래: 집단 사고방식(Collective Mind)

좀 더 대화형이 되어감에 따라 검색은 더 빨라졌다. 매일 혹은 심지어 매 시간마다 검색이 필요한 수 천 만개의 사이트에 블로그들이 추가되었으나, 마이크로블로깅은 실 시간적인 갱신을 요구하고 있다. 이는 인프라와 접근법 모두에 있어 중대한 변화가 이루어지고 있음을 의미한다. 트위터에서 현재 유행하는 주제에 대해 검색을 하면, 지금 당장 무슨 일이 일어나고 있는지 보세요" 그리고 뒤이어 "검색을 시작한 이후로 42개의 결과가 더 검색되었습니다. 이 내용을 보려면 다시 검색하세요." 라는 메시지를 보게 될 것이다:

더군다나, 사용자들 역시 검색 시스템과 함께 계속 진화하고 있다. 트위터에서, 공유된 사건에 대한 실시간 검색을 활성화하는 사용자들 간의 약속인 해쉬태그를 붙여보자. 다시 한번, 여러분은 사람들의 참여가 어떤 식으로 원시 데이터 스트림을 구조적으로 만드는지 보게 될 것이다.

실시간 검색은 실시간 응답을 이끌어낸다. 재 트윗된 "정보 캐스케이드(Information Cascades)"들은 트위터에서 순식간에 긴급속보 형태로 퍼져나가서, 무슨 일이 발생했는지 알고자 하는 많은 사람들을 위한 원천 소스가 되고 있다. 그리고 이것 역시 단지 시작일 뿐이다. 트위터와 페이스북의 status update 같은 서비스를 통해 웹에 새로운 데이터 소스가 추가되고 있으며, 이것들은 우리의 집단적 사고방식 상에서 실시간 지표가 되어가고 있다.

최근에 트위터에 의해 정치적 시위들이 발생하고 조정된 적이 있는 과테말라와 이란은 트위터의 영향력을 몸소 체험했다.

이러한 사실은 다음과 같은 시기 적절한 논쟁을 불러 일으키고 있다. 많은 사람들이 기술의 탈인간화 효과에 대해 걱정하고 있고, 우리 역시 같은 고민을 갖고 있다. 하지만 다른 측면에서 보면, 기술은 소통의 통로를 넓게 열어 공유된 컨텍스트를 제공하고, 궁극적으로는 정체성까지 공유하도록 이끌고 있다.

트위터는 또한 애플리케이션들이 어떻게 장치에 적응하는가에 대한 중요한 사실을 가르쳐주고 있다. 트윗은 140 글자로 제한된다; 트위터의 이러한 제한은 봇물처럼 넘쳐 흐르는 혁신을 이끌어냈다. 즉, 트위터 사용자들은 속기법(@username, #hashtag, $stockticker)을 개발했으며, 트위터 클라이언트들은 곧 클릭 가능한 링크로 변모했다. 전통적인 웹 링크에 대한 URL 속기법이 유명해졌고, 곧 클릭된 링크에 대한 데이터베이스가 새로운 실시간 분석을 가능하게 한다는 사실을 깨닫게 해주었다. 예를 들어, Bit.ly는 실시간으로 생성해낸 링크에 대한 클릭 수를 보여주고 있다.

이러한 결과로, 검색, 분석 그리고 소셜 네트워크로 대표되는 웹 서비스의 경쟁상대로 부상하고 있는 트위터 주변에 새로운 정보 계층이 구축되고 있다. 트위터는 또한 여러분이 API를 제공할 때 발생할 수 있는 것들에 대해 모바일 서비스 공급자들에게 객체 학습을 제공하고 있다. 트위터 애플리케이션 생태계로부터의 학습은 SMS와 다른 모바일 서비스, 혹은 이들을 대체하면서 성장할 수 있는 서비스를 위한 기회를 보여주고 있다.

실시간은 미디어나 모바일에 국한되지 않는다. 구글이 링크가 하나의 득표수라는 사실을 깨달았듯이, 월마트는 고객의 상품 구매도 하나의 득표수이며, 금전등록기는 이러한 득표수를 세는 센서라는 사실을 알아차렸다. 실시간 피드백 루프가 상품 목록을 관리하고 있는 것이다. 월마트를 웹 2.0 회사라고는 할 수는 없겠지만, 틀림없는 웹 스퀘어드 회사라고 할 수 있다. 이들의 사업운영에는 IT가 접목되어 있어, 고객들의 데이터에 의해 구동되고 있는데, 이로 인해 엄청난 경쟁우위를 갖게 된다. 웹 스퀘어드 기회의 대단한 점 중 하나는, 독점적인 공급망 없이도 이러한 종류의 실시간 지능을 작은 소매업자들에게 제공할 수 있다는 점이다.

말콤 글래드웰(Malcolm Gladwell)은 자신의 뉴요커 기고문에서 Tibco의 CEO이자 창업자인 바이벡 래너다이브(Vivek Ranadive)의 다음과 같은 감동적인 설명을 인용했다:

"이 세상에 있는 모든 것들은 이제 실시간화 되고 있다. 따라서 중국에서 만들어진 특정 종류의 신발이 근처에 있는 작은 상점에 진열되기까지 6개월을 기다릴 필요가 없다. 소프트웨어 덕분에 모든 것이 순식간에 일어난다"

굳이 센서에 의해 구매가 발생하지 않더라도, 실시간 정보는 비즈니스에 큰 영향을 주고 있다. 고객들이 자신들의 목적을 행동이나 말을 통해 웹에(그리고 트위터에) 게시하면, 회사들은 이를 듣고 대화에 참여해야만 한다. 컴캐스트(Comcast)라는 회사는 트위터를 이용해서 고객 서비스 접근법을 바꾸고 있으며, 다른 회사들 역시 이에 동조하고 있다.

실시간 피드백 루프에 대해 최근에 들었던 또 다른 놀라운 이야기는, 오바마 선거캠프에서 사용했던 후디니(Houdini) 시스템이다. 이 시스템은 유권자들이 실제로 투표를 하자마자 투표독려예상 목록에서 해당 투표자를 제거한다. 중요 지역에 있는 투표 감시자들은 투표자 리스트에서 줄이 그어진 이름들을 보고한다. 그리고 나서 보고된 사람들은 투표독려예상 목록에서 "사라지게"된다. (순식간에 명단이 사라지므로 이 시스템을 후디니 라고 지었다고 한다.)

후디니는 아마존의 메카니컬 터크(Mechanical Turk)에서 확실히 드러나고 있다. 센서 역할을 하는 한 그룹의 지원자들과 다중 실시간 데이터 큐는 동기화되며, 동일한 시스템에서 작동기로 사용되고 있는 다른 그룹의 지원자들을 위한 지침에 영향을 주는데 사용된다.

비즈니스는 자원할당, 고객서비스, 제품 개발을 위한 훨씬 더 효율적인 피드백 루프를 알려주는 핵심 신호로써 실시간 데이터를 이용하는 법을 배워야 한다.

결론: 문제의 본질

지금까지 언급한 내용은 여러 가지 방식으로 웹 스퀘어드 시대의 기회에서 가장 중요한 부분이 무엇이 될 것인가에 대한 하나의 서론을 얘기한 것이다.

웹을 위한 새로운 방향은, 물리적 세계와의 충돌의 과정으로, 비즈니스를 위해 엄청난 새로운 기회와 전 세계에서 가장 긴급한 문제들과의 차별성을 두기 위한 거대한 새로운 가능성을 열고 있다.

이미 이런 현상에 대한 수 백 가지의 예가 존재하고 있다(아래의 사례접수 참조). 하지만 에너지 생태계에서부터 보건의료에 대한 접근까지, 훨씬 더 큰 진전을 이뤄야 할 필요가 있는 영역이 매우 많다. 혼란에 휩싸인 작금의 금융 시스템은 말할 것도 없다. 심지어는 친규제적 환경에서도, 실시간으로 자동화된 금융 시스템이 정부의 규제 감독관들을 제쳐버렸다. 과연 우리가 소비자 인터넷으로부터 배웠던 것이 새로운 21세기 금융 규제 시스템을 위한 기초로 제 역할을 할 수 있을까? 이렇게 되기 위해서는 학습 기계, 변칙사항들을 탐지할 수 있는 알고리즘, 인원부족으로 인해 과로에 지친 규제 감독관들이 아닌, 진정으로 미래를 걱정하는 사람들의 감시가 이루어지는 투명성이 필요하다.

웹 2.0 이벤트를 시작했을 때, 우리는 "웹은 플랫폼이다"라고 단언했다. 그 이후로, 수 천 개의 비즈니스와 수 백만의 사람들이 웹이라는 플랫폼 위에 구축된 서비스와 제품들에 의해 변화되어왔다. 하지만 2009년은 웹의 역사에서 변곡점을 찍고 있다. 이제 우리가 구축했던 플랫폼의 진정한 힘을 이용할 때가 되었다. 웹은 더 이상 산업 자체가 아닌, 세상 그 자체가 되었다.

그리고 세상은 우리의 도움이 필요로 하고 있다.
세상에서 가장 급박한 문제를 해결하려고 한다면, 우리는 기술, 비즈니스 모델, 그리고 아마도 가장 중요한 항목인 개방성의 철학, 집단 지성 그리고 투명성으로 대표되는 웹의 진정한 힘이 작용하도록 만들어야 한다. 이렇게 하기 위해서, 우리는 웹을 한 단계 더 끌어올려야 한다. 이제 더 이상 점진적인 진화를 할 여유가 없다.

웹이 실 세계를 독려할 때가 왔다. 웹이 세상과 만나는, 바로 이것이 바로 웹 스퀘어드이다
posted by zeonis

댓글을 달아 주세요

2010.07.10 15:41 디지털 세상

클라우드가 수면으로 떠올라 주목받은 지도 벌써 5년여가 되었고, 클라우드 컴퓨팅은 IT 세상을 움직이는 차세대 기술로 인정받고 있습니다.


명실상부한 클라우드 컴퓨팅 서비스 1인자 아마존을 비롯해 2009년에는 구글에서 구글 앱 엔진을 발표했고, MS, Sun, IBM 등 줄줄이 클라우드 컴퓨팅에 뛰어들고 있으니 앞으로 치열한 경쟁이 벌어질 것으로 예상되기도 합니다. 또한 각 서비스가 어떤 특징과 강점을 들고 나올지도 기대가 되구요.


2009년 4월 구글이 구글 애플리케이션 엔진(Google Application Engine, 이하 구글 앱 엔진)이라는 이름으로 클라우드 컴퓨팅 환경을 발표한 이후, 구글 앱 엔진이 과연 아마존을 뛰어 넘는 서비스가 될 수 있을까에 대해 의견이 분분합니다.

(현재 구글의 문서에는 영문표기(Google App Engine)와 ‘구글 애플리케이션 엔진’이 혼용되고 있습니다. 『구글 앱 엔진 시작하기: 파이썬과 자바로 함께 배우는』(근간)에서는 구글 애플리케이션 엔진으로 썼는데, 이는 구글의 한국 번역 문서의 표기를 따른 것입니다.)

더불어 이 두 서비스의 장단점, 다른 점을 비교한 자료도 심심찮게 발견할 수 있습니다.


           
  

아마존과 구글이 제공하는 Paas 솔루션(2008.4)



    

애플리케이션에 적합한 클라우드 플랫폼 선택하기(IBM DeveloperWorks에서)



 

아마존과 구글이 지원하는 자원량 비교


같은 선상에 놓고 비교하기보다는 프로젝트나 애플리케이션의 특성에 따라 선택을 하여야 할 것 같습니다. 클라우드 컴퓨팅은 개발자들이 기능 구현에만 집중하도록 도와주는 도우미가 아니라, 구현하고자 하는 애플리케이션의 컴포넌트입니다. 한번 도입하면 써도 되고, 안 써도 되는 게 아니라 미우나 고우나 애플리케이션의 생명주기 동안 벗어날 수 없는 플랫폼입니다. 그래서 애플리케이션의 요구사항에 맞는 클라우드 컴퓨팅 서비스를 선택해서 프로젝트 조직과 프로세스에 안착시키는 것이 관건입니다. 마치 개발언어나 웹 애플리케이션 프레임워크를 선택하는 것처럼 말이죠.


이쯤에서 이런 의문이 들기도 합니다.

그러면 왜 굳이 구글 애플리케이션 엔진에 관심을 가져야 할까?


이에 대해 『구글 앱 엔진 시작하기: 파이썬과 자바로 함께 배우는』(근간)의 저자 박상엽 님은 프로젝트의 고충을 덜어주는 역할로서의 구글 앱 엔진을 소개하는 동시에 개발자가 기능 구현에만 집중할 수 있도록 해 준다는 큰 장점이 있지만, 아무리 좋다 하더라도 구글 앱 엔진 역시 도구일 뿐임을 기억하라는 글을 써 주셨습니다.


웹 서비스의 개발과 운영은 그 서비스가 어떤 형태를 띠고 있든, 결국 하나의 경영활동이라 믿습니다. 프로젝트의 상황과 요소들은 완벽하지 않아서 선택과 포기를 반복할 수밖에 없습니다.

구글 애플리케이션 엔진은 계정 신청을 하고 바로 기능개발을 하면 됩니다. 가용성과 확장성을 보장하고자 복잡한 네트워크나 백업 시스템을 설계할 필요 없이 서비스로 사용하면 됩니다. 대신 구글 애플리케이션 엔진을 이용하면 시스템과 네트워크, 그리고 분산처리에 관한 기술은 쌓을 수 없습니다. 프레임워크, 패턴 활용도 제약을 받습니다. 하지만 그만큼 서비스에 더 집중할 수 있습니다.


구글 애플리케이션 엔진은 PaaS 서비스를 계획하는 사람에게는 영감과 벤치마크 사이트를, 웹 서비스를 준비하는 조직에게는 든든한 기댈 곳이 될 것입니다. 머릿속을 맴도는 아이디어와 현실 사이에서 밤잠 이루지 못하는 학생들에게도 구글 애플리케이션 엔진은 여러분이 꿈을 펼칠 수 있는 좋은 기회를 줄 겁니다. 바라건대 구글 애플리케이션 엔진이라는 기술에 매달리지 말고, 그 주위와 이면의 현상들을 같이 살펴봐 주기 바랍니다. 이 책이 여러분의 꿈을 이루는 작은 디딤돌이 되었으면 좋겠습니다.

조만간 구글 앱 엔진을 다룬 국내 최초의 책이 발간됩니다. 이미 해외엔 구글 앱 엔진을 다룬 책이 몇 권(1, 2, 3) 발간되어 있습니다만, 저희가 이번에 발간할 책은 집필서입니다. 자바/파이썬을 동시에 설명하고 있죠. 

일단 표지만 살짝 공개해 봅니다. 조만간 발간 소식으로 다시 뵙겠습니다. 





출처: 도서출판 인사이트

posted by zeonis

댓글을 달아 주세요